New Bagadilico Money

For the first time Lund University has received a donation based on share dividends. The donation from Börje and Britta Andersson supports research on stem cells and Parkinson’s by a sum of 250,000 SEK annually to Patrik Brundin. Jia-Yi Li has received a 300,000 SEK grant from the Petrus and Augusta Hedlund foundation. The Anna-Lisa Rosenberg foundation has awarded 40,000 SEK each to two projects relevant for Parkinson’s disease: “In Vivo Analysis of alpha-synuclein Intercellular Transfer as a Novel Pathogenic Mechanism in Parkinson’s Disease” by Elodie Angot and Jennifer Steiner, and “Peripheral Regulation of Transgene Expression in the Brain” by Tomas Björklund.

New Bagadilico Member

Andrea Wiszmeg is an ethnologist starting at Bagadilico in August. She will conduct a survey exploring the general public’s attitudes towards experimental research. “The questionnaire will mostly deal with stem-cell transplantations and the moral and ethical dilemmas associated with that. I’m personally very interested in medical science, especially from a humanist perspective; how we look at the human body, its possibilities, borders and restrictions” says Andrea Wiszmeg. “Science is rapidly breaking new ground, but people in general have limited knowledge about these winnings. My assignment has a philosophical as well as a democratic dimension.”

Upcoming Events

May 5th. Ayse Ulusoy “spikar” her thesis.

May 12th at 16:30: Lecture with Olivier Piguet in the GK lecture hall, BMC F11 “Facts Feelings and Fiction: Clinical Considerations on Frontotemporal Dementia”

May 19th at 15:00: Lecture with Xianmin Zeng in Segelfalksalen, BMC A10. “Neural Stem Cells and Dopaminergic Neurons derived from Human Pluripotent Stem Cells: Developing Cell Replacement Therapy Drug Screening”

May 22nd at 09:00: Ayse Ulusoy defends her thesis “Modeling Pathophysiological Aspects of Parkinson’s Disease: Manipulating DA Handling and Alpha-synuclein Expression in the Nigrostriatal Pathway Using Viral Vectors.”
A Brief Encounter

Carl Rosenblad is a medical doctor about to specialize in neurology. He completed his thesis in Anders Björklund’s group in 1999. In Bagadilico he is the metaphorical voice of the patient.

The fact that all the clinical people in Bagadilico have a pre-clinical background makes Carl’s job easier: “So far, I’ve experienced no major cultural differences between clinical and pre-clinical members,” Carl smiles.

Having said that, what are the perspectives that you have to remind your pre-clinical colleagues about? “The most important aspect of my job is to always have the patient in mind; to assume responsibility for that we act balanced and ethically. Researchers, on one hand, sometimes don’t fully grasp the complex reality in the clinic, whereas patients that are experiencing complications in their illness, often are very keen on new treatments. In those situations it’s important for a practising medical doctor not to promise too much.”

Can you give examples of how the clinical reality is more complex? “When you treat a patient you may have to consider numerous other medications. In addition, the human brain is complex to the extent that there might be side effects that are never detected in animal models.”

What’s the response when you inform patients about gene-therapy possibilities? “When I give public talks people and patients are very enthusiastic. I rarely encounter scepticism.”

“Right now, in the process of bridging the gap between pre-clinic and clinic, it takes a concrete plan to make clinical testing a reality. I’m busy designing preparatory studies together with Deniz Kirik’s group. Although I’m seldom in the lab myself, my ambition is to keep the process running smoothly so that we reach our goal; a gene-therapy treatment useful for Parkinson patients and accepted by the regulatory authorities.”

“My work week is 50% clinical practise and 50% research,” says MD Carl Rosenblad.
Neuroscience Day

Professor Marie-Germain Bousser from Hospital Lariboisière in Paris started the day. She was first out in a great programme.

Professor Bousser’s lecture, entitled “The Discovery of CADASIL, an Example of How Clinical observation can Stimulate Basic Research” offered an example of “reversed” translational research.

CADASIL (Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy) is a hereditary disease that affects arteries, especially in the brain. The disease starts in childhood but has a very slow progress, causing migraine, stroke, manic-depressive symptoms and dementia to develop in young adulthood or middle age.

Her account of how the disease was discovered and its journey from bedside to lab bench was rich in dramatic family histories and very appreciated. When professor Bousser first came into contact with the disease in 1976 there was only one patient who’s symptoms puzzled the doctors. Thirty years later, there are 500 families diagnosed worldwide. “I’m very grateful to that first family who helped us find out so much about CADASIL. They have become my family too in a sense,” said Bousser, “Now we need a cure!”

After professor Bousser, Dr Sadaf Farooqi talked on the neurobehavioural basis of obesity. This was followed by professor Tamás Freund’s lecture “Control of Cortical Inhibition and Excitation by Endocannabinoids: Novel Insights into Anxiety and Epilepsy.”

In the afternoon Åke Ljungdahl’s memorial prize for innovation and development in Parkinson research was awarded to Elisabet Londos.

21 posters competed in a presentation, which was won by Shane Grealish. A special lay-out prize was awarded to Dimtry Suyatin.

Professor Joaquin Fuster from UCLA was the 2010 Segerfalk lecturer. His talk was entitled “Memory of the Future: the Prefrontal Cortex in Health and Disease.”

Chemiluminescence is the emission of light as the result of a chemical reaction. The Meso Scale platform makes use of this phenomenon when detecting, for example, antibodies. The machine is good at profiling biomarkers and cell signalling pathways. Another advantage is that it can perform several assays simultaneously - in other words, one sample can go a long way. Visit www.meso-scale.com to find out more, or contact Maria.Bjorkqvist@med.lu.se

Meso Scale summarized

*cytokines and chemokines
*cell signalling pathways
*hypoxia and angiogenesis markers
*Alzheimer’s disease markers
*vascular and growth factors
*metabolic markers
*immunogenecity
*cell-based assays
*vaccine/bio production
*custom assay designs